Citizen science in hydrology: A case study of Kathmandu Valley, Nepal

Rocky Talchabhadel^{1,7,*}, Rajaram Prajapati², Nischal Devkota², Jeffrey C. Davids^{3,4}, Anil Aryal⁵, Manisha Maharjan⁶, Amber Bahadur Thapa²

¹⁾ Department of Hydrology and Meteorology, Nepal, ²⁾ Smartphones for Water Nepal, ³⁾ Delft University of Technology, Netherland, ⁴⁾ Smartphones for Water Nepal (S4W-Nepal), Nepal, ³⁾ Delft University of Technology, Netherland, ⁴⁾ Smartphones for Water Nepal (S4W-Nepal), Nepal, ³⁾ Delft University of Technology, Netherland, ⁴⁾ Smartphones for Water Nepal (S4W-Nepal), Nepal, ³⁾ Delft University of Technology, Netherland, ⁴⁾ Smartphones for Water Nepal (S4W-Nepal), Nepal, ³⁾ Delft University of Technology, Netherland, ⁴⁾ Smartphones for Water Nepal (S4W-Nepal), Nepal, ³⁾ Delft University of Technology, Netherland, ⁴⁾ Smartphones for Water Nepal (S4W-Nepal), Nepal, ³⁾ Delft University of Technology, Netherland, ⁴⁾ Smartphones for Water Nepal (S4W-Nepal), Nepal, ³⁾ Delft University of Technology, Netherland, ⁴⁾ Smartphones for Water Nepal, ³⁾ Delft University of Technology, Netherland, ⁴⁾ Smartphones for Water Nepal, ³⁾ Delft University of Technology, Netherland, ⁴⁾ Smartphones for Water Nepal, ³⁾ Delft University of Technology, Netherland, ⁴⁾ Smartphones for Water Nepal, ³⁾ Delft University of Technology, Netherland, ⁴⁾ Smartphones for Water Nepal, ³⁾ Delft University of Technology, Netherland, ⁴⁾ Smartphones for Water Nepal, ³⁾ Delft University of Technology, Nepal, ⁴⁾ Smartphones for Water Nepal, ³⁾ Delft University of Technology, Nepal, ⁴⁾ Smartphones for Water Nepal, ³⁾ Delft University of Technology, Nepal, ⁴⁾ Smartphones for Water Nepal, ³⁾ Delft University of Technology, Nepal, ⁴⁾ Smartphones for Water Nepal, ⁴⁾ Delft University of Technology, Nepal, ⁴⁾ Smartphones for Water Nepal, ⁴⁾ Delft University of Technology, Nepal, ⁴⁾ Smartphones for Water Nepal, ⁴⁾ Delft University Other Nepal, for Water USA (S4W-USA), USA, ⁵⁾ Department of Civil and Environmental Engineering, University of Yamanashi, Japan, ⁶⁾ Department of Environmental Engineering, Kyoto University, Japan, ⁷⁾ Disaster Prevention Research Institute, Kyoto University, Japan * rocky.ioe@gmail.com

INTRODUCTION

- \succ Involvement of the general public (i.e. non-scientists) in the research design, data collection, interpretation and various scientific tasks with collaboration from professional scientists is generally referred to as citizen science (CS) (Buytaert *et al.* 2014).
- > In the social and political development context, public participation has been

RESULTS AND DISCUSSIONS

embedded into the mainstream for decades. CS emerged from and across many disciplines, is not a new concept but is becoming increasingly popular even in scientific research (Silvertown, 2009).

- \succ Hydrology remains a highly data-scarce; in many regions, if data exists, the lengths of the time series are not sufficient. The increased availability of Information and Communication Technology (ICT) - in particular, mobile phone opens up new ways of data acquisition and dissemination.
- > Smartphones for water (S4W)-Nepal has started CS utilizing mobile technology for hydrological data measurement (precipitation, streamflow, groundwater level/quality, stone spout flow/quality, land use, ecological stream health assessment). This paper has attempted to analyse S4W-Nepal CS based precipitation data of Kathmandu valley for the year 2017.

OBJECTIVES

- \succ The purpose of this study is to assess the performance of CS based precipitation data.
- > This study compares with the precipitation data maintained by the Department of Hydrology and Meteorology (DHM).

Spatial distribution of 1-day precipitation in Kathmandu Valley. [N = number of CS precipitation stations recorded on that day]

DATA AND METHODS

 \succ 83 stations placed at different locations of the valley are used. The average no. of days with recorded precipitation is 49.

Acknowledgements: The authors are thankful to the DHM and S4W-Nepal for providing us the precipitation data.

negatively deviated most of the time

CONCLUSIONS AND RECOMMENDATIONS

- > The availability of CS data is very poor except few stations. There are huge data gaps in time series data. The station wise data comparison is quite challenging.
- \succ In any case, huge spatial gaps for local variability are fulfilled by these data. The performance of spatially interpolated data is in good agreement. The spatially averaged CS precipitation shows a slightly positive deviation compared to spatially averaged DHM precipitation in Kathmandu Valley. The stations wise comparisons have mixed deviations.

> Comparison with satellite based products will be our future works.

References:

CS

-DHM

- Buytaert et al. 2014. Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development. Frontiers in Earth Science 2(October): 1–21.
- Silvertown J. 2009. A new dawn for citizen science. Trends in ecology & evolution 24(9): 467–71.